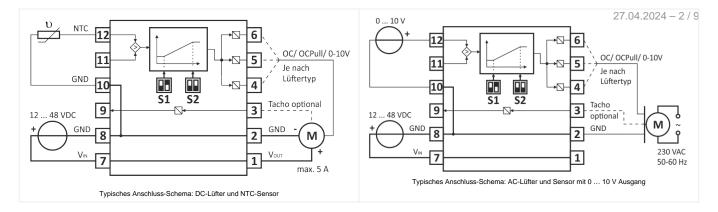
SN00008E - Drehzahlsteuerung

Eigenschaften

- Drehzahlsteuerung in Abhängigkeit einer Temperatur oder eines 0 ... 10 V / 4 ... 20 mA Signals
- Steuerung von DC- und AC-Lüftern mit PWM- oder 0 ... 10 V Steuereingang
- Direktanschluss von DC-Lüftern mit bis zu 5 A Stromaufnahme
- Weiter Eingangsspannungsbereich 12 ... 48 VDC
- Drehzahlkennlinie per DIP-Schalter konfigurierbar
- Kompatibel zu ebm-papst Lüftern
- Montage: Normtragschiene 35 mm

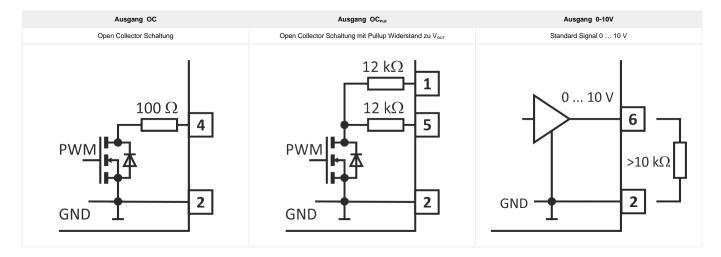


Anwendung

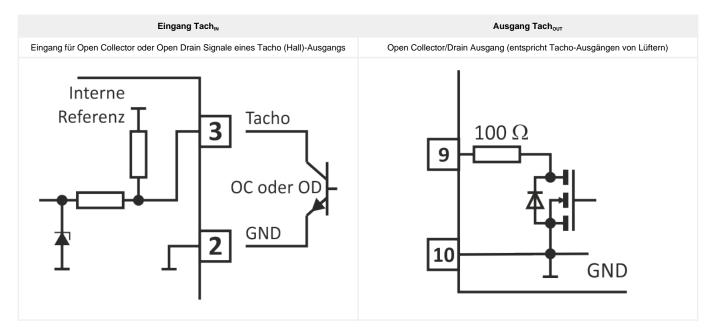
- Sensorgeführte Drehzahlsteuerung von Lüftern, Pumpen und Motoren, die über einen PWM- oder 0 ... 10 V Steuereingang verfügen
- Temperaturregelung in Schaltschränken, Heizungs-, Lüftungs- und Klimageräten
- Kombinierte Anwendung mit Lüfterausfallerkennungen der Fa. KD Elektroniksysteme

Kurzbeschreibung

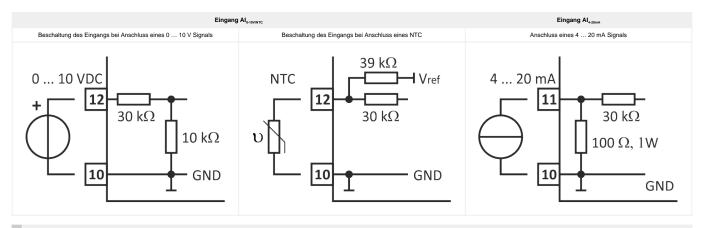
Das Hutschienenmodul steuert die Drehzahl eines DC- oder AC-Motors in Abhängigkeit eines Sensormesswertes. Das Modul stellt drei verschiedene Typen von Steuerschnittstellen (0 ... 10V, Open Collector, Open Collector mit Pullup) zur Verfügung, die jeweils die gleiche Drehzahl ausgeben. Der Sensoreingang kann mit einem NTC beschaltet werden oder einem Sensor mit 0 ... 10 V bzw. 4 ... 20 mA Ausgang. Für den Anschluss des NTC oder des 0 ... 10 V Sensors sind die gleichen Klemmen vorgesehen, das Modul erkennt automatisch was daran angeschlossen ist. Für einen 4 ... 20 mA Sensor steht ein separater Anschluss zur Verfügung. Sollten beide Anschlüsse beschaltet sein, wird die höhere der sich jeweils ergebenden Drehzahlen ausgegeben. Ist kein Signal vorhanden (Sensorabriss oder Kurzschluss) wird die maximale Drehzahl ausgegeben.


Die vom Modul ausgegebene Drehzahl wird anhand des gemessenen Sensorwertes und einer linearen Kennlinie ermittelt. Die Kennlinie kann durch zwei DIP-Schalter am Modul verändert werden. Mit dem Schalter S1 wird der Startwert und mit dem Schalter S2 wird der Offset der Kennlinie eingestellt. Bei Sensorwerten unterhalb des Startwertes wird eine minimale Drehzahl ausgegeben. Oberhalb des Endwertes (Startwert + Offset) wird die maximale Drehzahl ausgegeben. Zwischen dem Start- und Endwert wird linear interpoliert.

Optional kann das Tacho-Signal eines Lüfters bzw. Motors durch das Modul geschliffen werden, um es mit einer vorgeschalteten Ausfallerkennung zu überwachen.

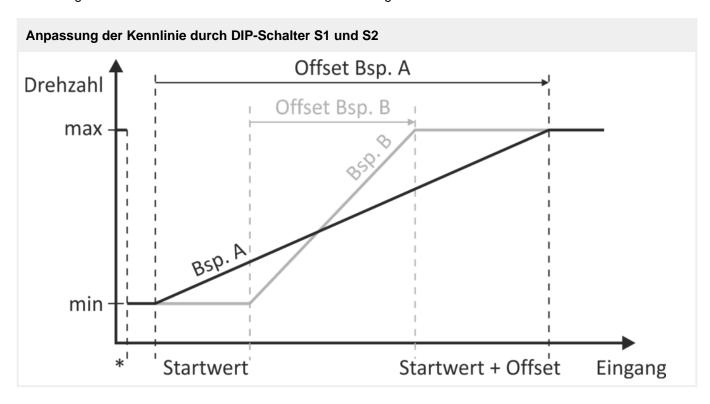

Schnittstellen

Anschluss	Bezeichnung	Beschreibung
01	V _{OUT}	(+), Versorgungsspannungsanschluss für den Lüfter, direkt verbunden mit $V_{\scriptscriptstyle \rm IN}$
02	GND	(-), Bezugsmasseanschluss für den Lüfter, direkt verbunden mit 8, 10
03	Tach _{IN}	Eingang für Tacho (Hall)-Ausgang des Lüfters (nicht direkt verbunden mit Tach _{OUT})
04	OC	Steuerausgang für Lüfter mit OC (Open Collector) Eingang
05	OC_Pull	Steuerausgang für Lüfter mit OC (Open Collector) Eingang und Pullup zu V_{OUT}
06	0-10V	Steuerausgang für Lüfter mit 0 10 V Eingang
07	V _{IN}	(+), Versorgungsspannungsanschluss für das Modul, direkt verbunden mit V_{OUT}
08	GND	(-), Bezugsmasseanschluss für das Modul, direkt verbunden mit 2, 10
09	Tach _{out}	(Hall)-Ausgang des Moduls für Anschluss an eine Lüfterausfallerkennung, entspricht Tach $_{\rm IN}$ (nicht direkt verbunden mit Tach $_{\rm IN}$)
10	GND	Bezugsmasseanschluss für den Sensoreingang, direkt verbunden mit 2, 8
11	AI _{4-20mA}	Analoger Eingang für 4 20 mA Signal
12	AI _{0-10V/NTC}	Analoger Eingang für NTC-Sensor oder 0 10 V Signal


Es stehen drei unterschiedliche Lüfter-Schnittstellen Typen zur Verfügung um möglichst viele verschiedene Lüfter? Typen zu unterstützen. Um den verwendeten Lüfter an der richtigen Schnittstelle anzuschließen, müssen die folgenden Anschlussbilder mit dem Datenblatt des Lüfters verglichen werden.

Das Tacho (Hall)-Signal des Lüfters kann optional am Modul angeschlossen werden. Es findet keine Auswertung des Signals statt. Das vom Lüfter ausgegebene Signal wird von der Drehzahlsteuerung am Eingang $Tach_{NN}$ aufgenommen und am Ausgang $Tach_{NN}$ wieder ausgegeben.

Am Eingang $AI_{0-10V/NTC}$ kann entweder ein 0 ... 10 V Signal oder ein NTC-Sensor angeschlossenen werden. Das Modul erkennt automatisch was angeschlossen ist. Es sollten ausschließlich die von KD-Elektroniksysteme angebotenen NTC-Sensoren genutzt werden.



Hinweis 27.04.2024 – 4/9

Liegt an keinem der Eingänge ein plausibles Signal an, wird die maximale Drehzahl ausgegeben. So wird trotz eines Sensorfehlers (Abriss oder Kurzschluss) ein Notbetrieb aufrechterhalten. Die plausiblen Bereiche der Eingänge sind unter "Technischen Daten" zu finden

Drehzahlkennlinie

Mit Hilfe der Kennlinie kann die Lüfter-Drehzahl mit dem Messbereich des Sensors abgestimmt werden. Es kann bestimmt werden ab welchem Sensormesswert der Lüfter beginnt schneller als die minimale Drehzahl (siehe "Technische Daten") zu drehen und ab welchem Sensorwert die Drehzahl das Maximum erreicht hat. Zur Einstellung der Kennlinie werden die DIP?Schalter *S1* und *S2* genutzt.

Eingang	Startwert, Schalter S1.1/2			Offset, Sch	Schalter S2.1/2			
	Off/Off	On/Off	Off/On	On/On	Off/Off	On/Off	Off/On	On/On
NTC	20 °C	25 °C	30 °C	35 °C	5 °C	10 °C	15 °C	20 °C
0 10 V	3 V	4 V	5 V	6 V	1 V	2 V	4 V	6 V
4 20 mA	8 mA	10 mA	12 mA	14 mA	2 mA	4 mA	7 mA	10 mA

^{*} Maximale Drehzahl, falls an keinem Eingang ein plausibles Signal anliegt.

27.04.2024 - 5 / 9

Sollte der Endwert (Startwert + Offset) größer sein als der maximale Eingangswert, wird die maximale Drehzahl nie erreicht. Beispiel: 0 ... 10 V: Startwert 6 V, Offset 6 V -> Endwert 6 V + 6 V = 12 V. Bei maximalem Eingangswert von 10 V werden sich etwa 73 % der maximalen Drehzahl einstellen.

Technische Daten

Versorgungsanschluss V _{IN}		
Betriebsspannung	12 48 VDC (Toleranz: 11,457,0 VDC)	
Versorgungsleistung	0,8 W (ohne Lüfter)	
Eingangsstrom	max. 5,1 A (inkl. max. Lüfter-Strom)	

Lüfter-Anschluss V _{out}			
Ausgangsspannung	Entspricht der Betriebsspannung an V_{IN} ($V_{OUT} = V_{IN}$)		
Ausgangsstrom	max. 5 A		

Lüfter-Hall-Eingang Tach _{IN}				
Eingangstyp	Anschluss eines Schaltkontakts als Open Collector oder Open Drain			
Klemmspannung	3,3 VDC (bei offenem Kontakt)			
Schaltkontaktstrom	0,5 mA (Strom durch geschlossenen Schaltkontakt des Lüfters)			
Schaltfrequenz, Max. zulässige Lüfter- Drehzahl	max. 1 kHz	Hallimpulse je Umdrehung	min ⁻¹	
Dictizatii		1 2 3 6	60.000 30.000 20.000 10.000	

Ausgang Tach _{out}	
Max. Anschlussspannung (extern)	57 V
Max. Schaltkontaktstrom	20 mA
Schaltfrequenz	max. 1kHz

Eingang Al _{0-10V/NTC}			
Max. Anschlussspannung	15 V		
NTC Typ	10 k? @ 25 °C, nur Typen der Fa. KD Elektroniksysteme		

Eingang Al _{0-10V/NTC}	
Messgenauigkeit	0 10 V: 1 % NTC: 1% (-20 +50 °C)
Plausibler Messbereich	0 10 V: >0,8 V NTC: -20 +70 °C

Eingang Al _{4-20mA}	
Max. Anschlussspannung	10 V
Messgenauigkeit	1 %
Plausibler Messbereich	> 3,5 mA

Ausgang OC, OC _{Pull}			
Max. Anschlussspannung (extern)	57 V		
Schaltfrequenz	ca. 2kHz		
Max. Schaltkontaktstrom	20 mA		
Toleranz	1 %		
Min Drehzahl	15 % (Tastverhältnis der PWM)		
Max Drehzahl	100 %		

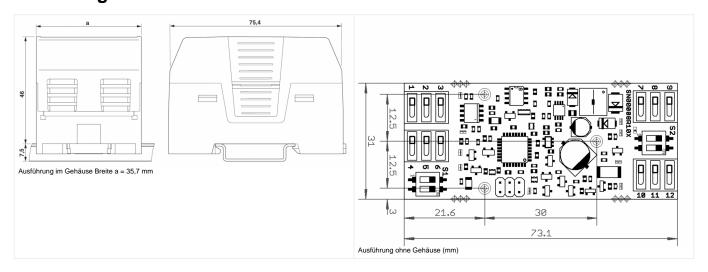
Ausgang 0-10V		
Ausgangsstrom	max. 1 mA	
Toleranz	2 %	
Min Drehzahl	1,5 V	
Max Drehzahl	10V	

Mechanische Daten	Ausführung im Gehäuse	Ausführung ohne Gehäuse
Maße (L x B x H)	(76 x 36 x 51) mm	(74 x 31 x 18) mm
Gewicht	ca. 50 g	ca. 30 g
Schutzart	IP20	IP00
Schutzklasse	II	-
Verschmutzungsgrad	2	
Montage	Normschiene 35 mm (DIN EN 50022)	Leiterplattenhalter Bohrdurchmesser 3,2 mm

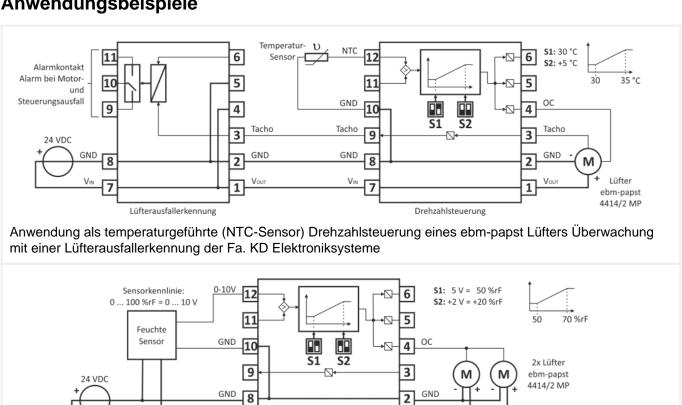
Anschluss			
Verbindungsart	Push-In-Federanschlusstechnik (Direktstecktechnik)		
Klemmbereich	0,13 1,5 mm² (AWG 2416) (Aderendhülse mit Kragen max. 0,75 mm²) Abisolierlänge 8 mm		
Leitungslänge	max. 30 m		

Umgebungsbedingungen			
Betriebstemperatur	-25 +70 °C		
Lagertemperatur	-25 +80 °C		
Luftfeuchtigkeit	0 95 %, keine Betauung		

Richtlinien und Normen


Richtlinien	Normen
Niederspannungs-Richtlinie 2014/35/EU	EN 60730-1, Automatische elektrische Regel- und Steuergeräte für den Hausgebrauch und ähnliche Anwendungen EN 60950-1, Einrichtungen der Informationstechnik – Sicherheit
EMV-Richtlinie 2014/30/EU	EN 55011, Industrielle, wissenschaftliche und medizinische Geräte – Funkstörungen – Grenzwerte und Messverfahren EN 61000-6-2, Fachgrundnormen – Störfestigkeit für Industriebereiche EN 61000-6-3, Fachgrundnormen – Störaussendung für Wohnbereich, Geschäfts- und Gewerbebereiche sowie Kleinbetriebe
RoHS-Richtlinie 2011/65/EU	

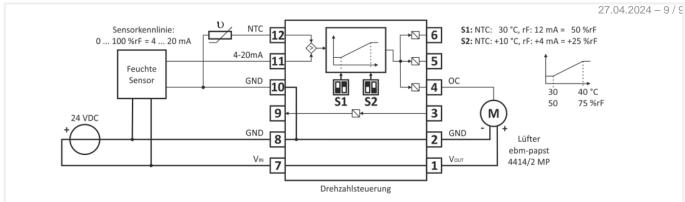
Kennzeichnungen C E RoHS 2011/65/EU


Bestellinformationen

Bestell-Nr.	Artikelcode	Beschreibung
151643	SN00008E	Drehzahlsteuerung im Gehäuse
151970	SN00011E	Drehzahlsteuerung ohne Gehäuse

27.04.2024 - 8 / 9 Zeichnungen

Anwendungsbeispiele


1

Anwendung als feuchtegeführte (rF-Sensor) Drehzahlsteuerung für zwei ebm-papst Lüfter

Drehzahlsteuerung

- 8

∤7

Anwendung als temperatur- (NTC-Sensor) und feuchtegeführte (rF-Sensor) Drehzahlsteuerung Hinweis:

Der Lüfter dreht mit der höheren der beiden Drehzahlen die sich jeweils aus der Temperatur und aus der Feuchte ergibt.

Kontaktdaten

KD Elektroniksysteme GmbH Ahornweg 9 39261 Zerbst

Telefon: +49 (0) 3923 4848-0 Fax: +49 (0) 3923 4848-111

E-Mail: info@kd-elektroniksysteme.de Homepage: www.kd-elektroniksysteme.de